Particle manipulation in a microfluidic channel using acoustic trap
نویسندگان
چکیده
منابع مشابه
Independent Study: Microfluidic Channel for Acoustic Particle Manipulation
To study acoustic microfluidic particle manipulation, a microfluidic channel was designed in AutoCAD and fabricated in a silicon wafer using potassium hydroxide etching and other cleanroom techniques. The first channel created was destructively tested and its fabrication techniques characterized; future channel development is outlined.
متن کاملSurface acoustic wave-induced precise particle manipulation in a trapezoidal glass microfluidic channel
Surface acoustic wave (SAW) excitation of an acoustic field in a trapezoidal glass microfluidic channel for particle manipulation in continuous flow has been demonstrated. A unidirectional interdigital transducer (IDT) on a Y-cut Z-propagation lithium niobate (LiNbO3) substrate was used to excite a surface acoustic wave at approximately 35 MHz. An SU8 layer was used for adhesive bonding of the ...
متن کاملStokes trap for multiplexed particle manipulation and assembly using fluidics.
The ability to confine and manipulate single particles and molecules has revolutionized several fields of science. Hydrodynamic trapping offers an attractive method for particle manipulation in free solution without the need for optical, electric, acoustic, or magnetic fields. Here, we develop and demonstrate the Stokes trap, which is a new method for trapping multiple particles using only flui...
متن کاملFast Inertial Microfluidic Actuation and Manipulation Using Surface Acoustic Waves
Though uncommon in most microfluidic systems due to the dominance of viscous and capillary stresses, it is possible to drive microscale fluid flows with considerable inertia using surface acoustic waves (SAWs), which are nanometer order amplitude electro-elastic waves that can be generated on a piezoelectric substrate. Due to the confinement of the acoustic energy to a thin localized region alo...
متن کاملAn integrated acoustic and dielectrophoretic particle manipulation in a microfluidic device for particle wash and separation fabricated by mechanical machining.
In this study, acoustophoresis and dielectrophoresis are utilized in an integrated manner to combine the two different operations on a single polydimethylsiloxane (PDMS) chip in sequential manner, namely, particle wash (buffer exchange) and particle separation. In the washing step, particles are washed with buffer solution with low conductivity for dielectrophoretic based separation to avoid th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Microdevices
سال: 2011
ISSN: 1387-2176,1572-8781
DOI: 10.1007/s10544-011-9548-0